Publications

At Illinois

Pending Publications

    • Kim S. H.; Jo J.; Park T. W.; Chung Y. M.; Song H. H.; Lee S. W.; Park Y.; Moon W. K.; Lee E.J; Hwang G. W.; Jung M. H.; Hong W. K.; Sohn D.; Lee Y.; Yoon K. B.; Shin S. H.; Han H.-S.*; Han Y. K.* “Single-step synthesis of mesoporous vinyl polymers via hierarchical assembly of stereocontrolled chains”, submitted.
    • Cowell, T. W.; Puryear, W.; Chen, C.-L.; Ding, R; Runstadler, J.; Han, H.-S.* “Unbiased, Cell-free Profiling of Single Influenza Genomes at High-throughput”, submitted. article

* Indicates corresponding author(s)

Book Chapters

    • Cowell, T. W.; Han H.-S.* (2023). “Double Emulsion Flow Cytometry for Rapid Single Genome Detection”. In: Li, P.C., Wu, A.R. (eds) Single-Cell Assays. Methods in Molecular Biology, vol 2689. Humana, New York, NY.  article

Papers

    1. Cowell, T. W.; Jing W.; Noh, H.; Han H.-S.*; “Drop-by-drop Addition of Reagents to a Double Emulsion”, Small, 2024. articleDetails are in the caption following the image

    1. Chen, L.; Chen, A.; Zhang, X. D.; T. Robles, M. S.; Han, H.-S.; Xiao, Y. Xiao, G.; Pipas, J. M.; Weitz, D. A.; “Targeted whole-genome recovery of single viral species in a complex environmental sample”, PNAS, 2024, 121(31), e2404727121. article

    1. Park, J.; Han, H.-S.* “Organoborane Se and Te precursors for controlled modulation of reactivity in nanomaterial synthesis”, ACS Nano, 2024, 18, 24, 15487–15498. article

    1. Kumar, A.; Schrader, A. W.; Boroojeny, A. E.; Asadian, A.; Lee, J.; Song, Y. J.; Zhao, S. D.*; Han, H.-S.*; Sinha, S.* “Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT)”, Nature Communication, accepted. article An external file that holds a picture, illustration, etc.
Object name is nihpp-rs2481749v1-f0001.jpg

    1. Yeo, S.; Schrader, A. W.; Lee, J.; Asadian, A.; Han, H.-S.* “Spot-Based Global Registration for Sub-pixel Stitching of Single-Molecule Resolution Images for Tissue-Scale Spatial Transcriptomics”, Analytical Chemistry, 2024, 96(17),  6517-6522. article

    1. Lee, J.; Soares, G.; Doty, C.; Park, J.; Hovey, J.; Schrader, A. W.; Han, H.-S.* “Versatile Pre-Polymer Platform for Controlled Tailoring of Quantum Dot Surface Properties”, ACS Appl. Mater. Interfaces, 2024, 16, 12, 15202-15214 .article

    1. Jankelow, A.; Chen, C.; Cowell, T. W.; Monteros, J. E.; Bian, Z.; Kindratenko, V.; Han H.-S.; Valera, E.; Bashir, R. “Multiplexed Electrical Detection of Whole Viruses from Plasma in a Microfluidic Platform”, Analyst, 2024, Advance online publication. articleGraphical abstract: Multiplexed electrical detection of whole viruses from plasma in a microfluidic platform

    1. Chen, A.; Zhu, L.; Han H.-S.; Arai, Y. “Spectroscopic Investigation of Phosphorus Mineralization as Affected by the Calcite-Water Interfacial Chemistry”, Environ. Sci. Technol. 2023, 57(43), 16606–16615. article

    1. Valera, E.; Kindratenko, V.; Jankelow, A.; Heredia, J.; Cowell, T. W.; Chen, C.-L.; Han, H.-S.; Bashir, R.* “Electrochemical Point-of-Care Devices for the Diagnosis of Sepsis”, Curr. Opin. Electrochem, 2023, 39, 101300. article

    1. Miller, R. C.; Lee, J.; Kim, Y.; Han, H.-S.*; Kong, H.* “In-drop thermal cycling of microcrystal assembly for senescence control (MASC) with minimal variation in efficacy”, Adv. Funct. Mater, 2023, 33(37), 2302232. articleDetails are in the caption following the image

    1. Miller, R.; Kim, Y.; Park, C. G.; Torres, C.; Kim, B.; Lee, J.; Flaherty, D.; Han, H.-S.; Kim, Y. J.*; Kong, H.* “Extending the bioavailability of hydrophilic antioxidants for metal ion detoxification via recrystallization with polysaccharide dopamine”, ACS Appl. Mater. Interfaces, 2022, 14, 35, 39759–39774. article

    1. Martin, J.; Lanning, R.; Chauhan, V.; Martin, M.; Mousa, A.; Kamoun, W.; Han, H.-S.; Lee, H.; Stylianopoulos, T.; Bawendi, M.; Duda, D.; Brown, E.; Padera, T.; Fukumura, D.; Jain, R. “Multiphoton phosphorescence quenching microscopy reveals kinetics of tumor oxygenation during anti-angiogenesis and angiotensin signaling inhibition, Clinical Cancer Research, 2022, 28, 14, 3076-3090. articleFigure 1. Multiphoton phosphorescence quenching microscopy (MP-PQM). A, Schematic of the experimental setup. EOM, electro-optic multiplier; PMTs, photomultiplier tubes; GaAs, Gallium arsenide; Tpw, temporal duration of the excitation pulse width; Texp, duration of the experimental triggering time. Arrows indicate the direction of communication. Dashed gray lines indicate two-way communication. B, Single- and two-photon action cross-sections for Pd-porphyrin soluble oxygen sensor. The single-photon excitation spectrum (blue line) does not show absorption or emission in the wavelength range of two-photon (red line). The lone peak at 690 nm is due to excitation light at the same wavelength as the emission bandpass filter in the spectrophotometer. C, Two-photon excitation at 1,020 nm of Pd-porphyrin phosphorescent oxygen sensor relating the emitted photons to the excitation power on a log–log scale. The experiment was repeated at oxygen tensions of 9 mmHg, 37 mmHg, and 75 mmHg (blue, red, and green lines, respectively). D, In vivo two-photon excitation of Pd-porphyrin oxygen sensor. A series of time-domain lifetime measurements performed in tumor vasculature (red asterisk, inset) shows the nonlinear excitation of the Pd-porphyrin sensor. E, Diagram of the recirculating, sealed calibration system using a fiber oxygenator indicating the direction of fluid and gas flow. An independent pO2 measurement is made with a calibrated optical fiber ruthenium-based probe. F, Two-photon calibration of the albumin-bound (blue line) and single-component (green line) fits of the Pd-porphyrin oxygen sensor. The left vertical axis applies to the bound fraction. The right vertical axis applies to the free fraction. The vertical axes are the phosphorescence lifetime in units of per μs and the horizontal axis is oxygen tension in units of mmHg. The Stern–Volmer constant is 3,115 per mmHg/s for the free fraction and 285 per mmHg/s for the bound fraction.

    1. Jing, W.; Han, H.-S.* “Droplet Microfluidics for High-Resolution Virology”, Anal. Chem. (invited Perspective), 2022, 94, 23, 8085–8100. article

    1. Cowell, T. W.; Dobria, A.; Han, H.-S.* “Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis” Biorxiv 2021/469484. ACS Appl. Mater. Interfaces, 2022, 14, 18, 20528–20537. article

    1. Jing, W.; Han, H.-S.* “Inertial Self-Assembly Dynamics of Interacting Droplet Ensembles in Microfluidic Flows” Analytical Chemistry, 2022, 94, 9, 3978-3986. article

    1. Park, J.; Jayaraman, A. R.; Wang, X.; Zhao, J.; Han, H.-S.* “Nanocrystal Precursor Incorporating Separated Reaction Mechanisms for Nucleation and Growth to Unleash the Potential of Heat-up Synthesis” ACS Nano, 2020, 14, 9, 11579-11593. article

    1. Park, J.; Jayaraman, A. R.; Schrader, A. W.;  Hwang, G. W.; Han, H.-S.* “Controllable modulation of precursor reactivity using chemical additives for systematic synthesis of high-quality quantum dots” Nature Comm, 2020, 11, 5748. article (selected as Editor’s highlight, featured article in Materials Science and Chemistry)Fig. 1

    1. Cowell, T. W.; Valera, E.; Jankelow, A.; Park, J.; Schrader, A. W.; Ding, R.; Berger, J; Bashir, R.; Han, H.-S.* “Rapid, Multiplexed Electrical Detection of Biomolecules using Electrically Distinct Hydrogel Beads”, Lab Chip. 2020, 20, 2274-2283. article (selected as the inside front cover article)

TOC_graphiv

 

Microfluidic Synthesis of Multiplexing Beads

 

Cover art for Lab on a Chip Vol. 20 Issue 13. Multiplexed hydrogel beads are depicted as they are counted and captured on a microfluidic device. This device can rapidly detect and quantify multiple biological targets.

Patents

    1. Han H.-S. and Park J. “Precursor chemistry for quantum dot synthesis enabling temperature-independent modulation of reactivity” Provisionally submitted.

    1. Han H.-S., Bashir R., Cowell T. and Valera E. “Electrically distinct hydrogel microparticles for multiplexed detection, quantification and barcoding” U.S.#20200391169. Dec. 17, 2020.

Prior Research

Papers

    1. Han H.-S.; Cantalupo P. G.; Rotem A.; Cockrell S. K.; Carbonnaux M.; Pipas J. M.; Weitz D. A. “Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample” Angew. Chem. Int. Ed2015, 54, 13985–13988. article
      * Above article was selected as a “Hot paper”.Description unavailable

    1. Han H.-S.; Niemeyer E.; Huang Y.; Kamoun W. S.; Martin J. D.; Bhaumik J.; Chen Y.; Roberge S.; Cui J.; Martin M. R.; Fukumura D.; Jain R. K.; Bawendi M. G.; Duda D. G. “Quantum Dot/Antibody Conjugates for In vivo Cytometric Imaging in Mice” Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 1350–1355. article

    1. Chen O.; Zhao J; Chauhan V. P.; Cui J.; Wong C.; Harris D. K.; Wei H.; Han H.-S.; Fukumura D.; Jain R. K.; Bawendi M. G. “Compact High-Quality CdSe-CdS Core-Shell Nanocrystals with Narrow Emission Linewidths and Suppressed blinking” Nat. Mater. 2013, 12, 445–451. articlefigure 1

    1. Manfrinato V. R.; Wanger D.D.; Strasfeld D. B.; Han H.-S.; Marsili F.; Arrieta J. P.;Mentzel T. S.; Bawendi M. G.; Berggren K. K. “Controlled Placement of Colloidal Quantum Dots in sub-15-nm Clusters” Nanotechnology. 2013, 24, 125302. articleFigure 1.

    1. Han H.-S.; Martin J.; Lee J.; Harris D. K.; Fukumura D.; Jain R. K.; Bawendi M. G. “Spatial Charge Configuration Regulates Nanoparticle Transport and Binding Behavior in vivo” Angew. Chem. Int. Ed. 2013, 52, 1414–1419. article
      * Above article was highlighted in Nat. Mater. 2013, 12, 91.Details are in the caption following the image

    1. Wei H.; Insin N.; Lee J.; Han H.-S.; Cordero J. M.; Liu W.; Bawendi M. G. “Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications” Nano Lett2012, 12, 22–25. article

    1. Harris D. K.; Allen P. M.; Han H.-S.; Walker B. J.; Lee J.; Bawendi M. G. “Synthesis of Cadmium Arsenide Quantum Dots Luminescent in the Infrared”, J. Am. Chem. Soc. 2011, 133, 4676–4679. article

    1. Dorn A.; Strasfeld D. B.; Harris D. K.; Han H.-S.; Bawendi M. G. “Using Nanowires to Extract Excitons from a Nanocrystal Solid” ACS Nano2011, 5, 9028–9033. article

    1. Han H.-S.; Devaraj N. K.; Lee J.; Hilderbrand S. A.; Weissleder R.; Bawendi M. G. “Development of a Bioorthogonal and Highly Efficient Conjugation Method for Quantum Dots using Tetrazine-Norbornene Cycloaddition” J. Am. Chem. Soc. 2010, 132, 7838–7839. article

    1. Verma A.; Uzun O.; Hu Y.; Hu Y.; Han H.-S.; Watson N.; Chen S.; Irvine D. J.; Stellacci F. “Surface-Structure-Regulated Cell-Membrane Penetration by Monolayer-Protected Nanoparticles” Nat. Mater. 2008, 7, 588–598. articlefigure 1

Patents

    1. Han H.-S., Pipas, J.M. and Weitz D.A. “Systems and Methods for Sequencing Viruses” Provisionally submitted.

    1. Han H.-S., Wei H., Insin N. and Bawendi M. G. “Compact Nanoparticles for Biological Applications” W.O. Patent #2013090601, Aug. 8, 2013/U.S. #20130184444, July 18, 2013.

    1. Han -S., Devaraj N. K., Hilderbrand S. A., Weissleder R. and Bawendi M. G. “Compositions and Methods for Bioconjugation to Quantum Dots” W.O. Patent #2011112970, Jan. 19, 2012.

    1. Han H.-S., Liu W. and Bawendi M. G.Ligands for Semiconductor Nanocrystals” W.O. Patent #2011119654, Publication date: Sep. 29, 2011/U.S. #20110236315, Sep. 29, 2011